Monatshefte für Chemie 102, 1146—1155 (1971) © by Springer-Verlag 1971

Berechnung von Streumassenradien aus unverschmierten und spaltverschmierten Röntgen-Kleinwinkelstreukurven

Von

Gregor Damaschun und Hans-Volker Pürschel

Deutsche Akademie der Wissenschaften, Forschungszentrum für Molekularbiologie und Medizin, Physikochemisches Zentrum, DDR-1115 Berlin-Buch, Lindenberger Weg 70

Mit 1 Abbildung

(Eingegangen am 8. Mai 1971)

Calculation of Radii of Gyration from Desmeared and Smeared Small-angle X-ray Scattering Curves

The small-angle X-ray scattering curve of particles is recorded at equidistant values of the scattering angle. The radius of gyration of the particles is determined by weighted summation of the intensity values. This parameter may be obtained either from a previously desmeared scattering curve as well as directly from data smeared by an infinitely long primary beam. An example is given, showing that a weighted summation of only five intensity values is sufficient to determine the radius of gyration at a truncation error smaller than one percent, provided that the particles are nearly isometric and without hollows.

Die Röntgen-Kleinwinkelstreukurve von Partikeln wird bei äquidistanten Werten des Streuwinkels registriert. Der Streumassenradius der Partikel wird durch gewichtete Summation der Intensitätswerte bestimmt. Dieser Parameter kann sowohl aus der vorher entschmierten als auch aus der mit unendlich langem Primärstrahl verschmierten Streukurve erhalten werden. An einem Beispiel wird gezeigt, daß die gewichtete Summation von nur fünf Intensitätswerten ausreicht, um den Streumassenradius mit einem Abbruchfehler von weniger als einem Prozent zu bestimmen — vorausgesetzt, die Partikel sind nahezu isometrisch und ohne Hohlräume.

Einleitung

Für die physikochemische Charakterisierung von Makromolekülen und Makromolekülassoziaten ist die Beschreibung ihrer Struktur durch modellunabhängig eindeutig definierte sowie einfach und genau meßbare Parameter (Maßzahlen) von besonderer Bedeutung. Dies ist insbesondere bei der Untersuchung und Beschreibung der Struktur von Biopolymeren, z. B. Proteinen, Nucleinsäuren, Nucleoproteinen, Viren u. ä., zu fordern, bei denen eine große Anzahl von identischen Partikeln für die Untersuchung vorliegt, und die Erfassung von kleinen Konformationsänderungen, z. B. bei der Wechselwirkung mit Liganden, von besonderem Interesse ist.

Ein solcher physikochemischer Parameter der Objekte ist ihr Trägheitsradius, der durch die Beziehung

$$R^{2} = \frac{\int \mathrm{d}v \ r_{m}^{2} \cdot m\left(\overrightarrow{r_{m}}\right)}{\int \mathrm{d}v \ m\left(\overrightarrow{r_{m}}\right)} \tag{1}$$

definiert ist (dv = Volumenelement, $\overrightarrow{r_m}$ = vom Schwerpunkt des Teilchens ausgehender Vektor, $|\overrightarrow{r_m}| = r_m$, $m(r_m)$ = Massendichte). Die Integration erfolgt über das Teilchenvolumen. Dem Trägheitsradius entsprechende Größen werden mittels hydrodynamischer Methoden¹ oder als "Streumassenradien" aus Lichtstreuungs-¹ und Röntgen-Kleinwinkelstreuungsdaten^{2, 3} ermittelt.

Im folgenden werden Beziehungen angegeben, die es gestatten, Streumassenradien in sehr einfacher Weise ohne Verwendung von Näherungsbeziehungen aus gemessenen Röntgen-Kleinwinkeldaten direkt zu berechnen. Mit den angegebenen Formeln kann darüber hinaus der Streumassenradius bei einem on- oder off-line-Betrieb des Diffraktometers⁴ direkt während oder nach der Messung bestimmt werden.

Näherungsbeziehungen

Aus entschmierten, d. h. bezüglich der apparativen Einflüsse korrigierten⁵ Röntgen-Kleinwinkel(RKW)-Diagrammen monodisperser verdünnter Systeme wird das Quadrat des Streumassenradius R_{sc}^2 mittels der *Guinie*rschen Näherung⁶ nach Gl. (8) bestimmt. Das graphische Verfahren ist ausführlich von *Kratky*² beschrieben worden. Bei der Auswertung von Präzisionsmessungen der *RKWS* werden dabei

 $^{^1~}M.~Bruce,$ Introduction to Biophysical Chemistry. London: McGraw-Hill. 1964.

² O. Kratky, Progr. in Biophysics 13, 105 (1963).

³ R. G. Kirste und W. Wunderlich, Z. Physik. Chem. [NF] 85, 133 (1968).

⁴ H. Leopold, Z. angew. Physik 25, 81 (1968).

⁵ O. Kratky, G. Porod und Z. Skala, Acta Phys. Austr. 13, 76 (1960).

⁶ A. Guinier und G. Fournet, Small-Angle Scattering of X-Rays. New York-London: Pergamon Press, 1955.

Fehler von 0.6% bis 5% für den Streumassenradius angegeben⁷⁻¹⁰. Streumassenradien können nach *Kirste* und *Wunderlich*³ auch aus dem *Zimm*diagramm von *RKW*-Streukurven erhalten werden.

Die Bevorzugung des Streumassenradius gegenüber anderen geometrischen Parametern hat u. a. folgende Gründe: Er ist als mittl. quadrat. Abstand der Überschußelektronen von deren Ladungsschwerpunkt relativ anschaulich und läßt sich für Modellstrukturen einfach berechnen. Da der Streumassenradius im wesentlichen aus dem intensitätsstarken Innenteil der Streukurve bestimmt wird, ist er insbesondere gegenüber Parametern, bei denen die *Porod*sche Invariante¹¹ der Streukurve in die Bestimmungsgleichung¹² eingeht, verhältnismäßig schnell und genau (s. oben) zu bestimmen. Wir haben eine einfache und modellunabhängige Formel angegeben^{13, 14}, mit der der Streumassenradius von aus Subeinheiten zusammengesetzten Partikeln aus den Streumassenradien der Subeinheiten und ihren wechselseitigen Abständen bestimmt werden kann.

Bei Kenntnis eines ungefähren Wertes des Streumassenradius kann man den größten Abstand der Meßpunkte abschätzen, mit dem eine RKWS-Kurve ohne Informationsverlust abgetastet werden darf^{13, 15} bzw. aus dessen Kenntnis heraus eine redundant gemessene Streukurve^{13, 16, 17} geglättet werden kann.

Neben den unbestrittenen Vorteilen der Bestimmung des Streumassenradiusquadrates nach der *Guinier*näherung besitzt diese Methode jedoch eine Reihe von Nachteilen. Die *Guinier*näherung ist eine asymptotische Näherung für unendlich kleine Winkel. Diese sind der direkten Messung nicht zugänglich. Daraus resultierende Schwierigkeiten offenbaren sich, wenn man die *Guinier*gerade nach der Methode der kleinsten Quadrate rechnerisch bestimmt und dabei einen Ausdruck für den mitt-

⁷ I. Pilz, O. Kratky und I. Maring-Claeson, Z. Naturforsch. 25 b, 600 (1970).

⁸ H. Conrad, A. Mayer, H. P. Thomas und H. Vogel, J. mol. Biol. 41, 225 (1969).

⁹ I. Pilz, O. Kratky, F. v. D. Haar und E. Schlimme, Europ. J. Biochem. 15, 401 (1970).

¹⁰ R. G. Kirste und H. B. Stuhrmann, Z. Physik. Chem. [NF] **56**, 338 (1967).

¹¹ G. Porod, Kolloid-Z. u. Z. Polymere **124**, 83 (1951).

¹² G. Damaschun, J. J. Müller, H.-V. Pürschel und G. Sommer, Mh. Chem. 100, 1701 (1969).

¹³ G. Damaschun, J. J. Müller und H.-V. Pürschel, Acta biol. med. german. 20, 379 (1968).

¹⁴ G. Damaschun und H.-V. Pürschel, Acta biol. med. german. 24, 59 (1970).

¹⁵ G. Damaschun, J. J. Müller und H.-V. Pürschel, Mh. Chem. **99**, 2343 (1968).

¹⁶ H. Oelschlaeger, Acta Phys. Austr. 30, 323 (1969).

¹⁷ G. Damaschun, J. J. Müller und H.-V. Pürschel, Acta crystallogr. (Kopenhagen) A 26 (1970), im Druck. leren quadratischen Fehler des Streumassenradiusquadrates angeben will. Die Fehler durch falsche Extrapolation zu kleinen Streuwinkeln in der *Guinier*-Auftragung und im *Zimm*diagramm werden von *Kirste* und *Wunderlich*³ diskutiert.

Die Guiniersche Näherung nach Gl. (8) gilt nur für den Innenteil der Streukurve von Partikeln, deren Überschußelektronendichte durchwegs positiv oder negativ ist. Diese Voraussetzung trifft nicht allgemein zu; bei negativen und positiven Überschußelektronendichten in einer Partikel ist das Quadrat des Streumassenradius positiv oder negativ, speziell kann es Null sein^{18, 19}. In den beiden letzten Fällen kann der Innenteil der Streukurve nicht mehr durch Gl. (8) approximiert werden.

Bei der Untersuchung der *RKWS* größerer Partikel ist die gemessene Streukurve in guter Näherung eine mit einem "unendlich langen" Spalt⁵ verschmierte — kurz spaltverschmierte — Streukurve.

$$\widehat{\mathbf{I}}(b) = 2 \int_{0}^{\infty} \mathbf{I}\left(\sqrt{b^2 + t^2}\right) \mathrm{d}t \quad , \tag{2}$$

 $b = 2 \lambda^{-1} \sin \vartheta$, $\vartheta =$ Beugungswinkel, $\lambda =$ Wellenlänge der Strahlung.

Es gibt bisher kein allgemein gültiges Verfahren, aus $\widehat{\mathbf{I}}(b) R_{sc}^2$ ohne Entschmierung⁵ zu bestimmen. Von *Luzzati*²⁰ ist eine Näherungslösung vorgeschlagen worden. Der Anstieg der *Guinier*geraden der verschmierten Streukurve ist durch die Größe $\frac{v_c \overline{a}_c}{f_c}$ bestimmt²¹. \overline{a}_c ist der mittlere Abstand der Überschußelektronen im untersuchten Partikel, f_c deren

Korrelationsfläche und v_c ihr Korrelationsvolumen.

Streumassenradius und Korrelationsfunktion

Von uns¹⁹ wurde unter Benutzung des Sampling-Theorems der Informationstheorie eine Darstellung der Streutheorie für verdünnte Systeme angegeben, bei der alle aus RKWS-Daten berechenbaren Größen aus gemessenen Werten der Streufunktion $I(b_k)$ an diskreten Sampling-Punkten berechnet werden können. Insbesondere ist bei dieser Darstellung der Streutheorie die Kenntnis des Wertes I(0) nicht mehr notwendig, da er durch andere gemessene Daten eindeutig bestimmt ist. Im folgenden werden die für die praktische Auswertung von Röntgen-

¹⁸ H. B. Stuhrmann und R. G. Kirste, Z. Physik. Chem. [NF] 56, 334 (1967).

 $^{^{19}}$ G. Damaschun und H.-V. Pürschel, Acta crystallogr. (Kopenhagen) A, im Druck.

²⁰ V. Luzzati, Acta crystallogr. (Kopenhagen) 11, 843 (1958).

²¹ G. Damaschun und H.-V. Pürschel, Mh. Chem. 100, 510 (1969).

Kleinwinkelstreukurven wichtigen Ausdrücke zur Bestimmung des Streumassenradius angegeben. Dabei werden folgende Symbole benutzt:

 $\Delta \rho(\vec{r}) = \ddot{U}$ berschußelektronendichte im Teilchen gegenüber dem Mittelwert ρ_L im Lösungsmittel, $\Delta \rho(\vec{r}) \equiv 0$ außerhalb des Teilchens,

 $\eta=\langle\Delta\rho\rangle_v=$ über das Teilchenvolumen gemittelte Überschußelektronendichte,

 $\vec{s(r)} = Ewald$ sche Gestaltsfunktion des Teilchens,

 $\vec{\epsilon(r)} = \Delta \vec{\rho(r)} - \eta \cdot \vec{s(r)} = Abweichung der Überschußelektronen$ dichte von ihrem Mittelwert im Teilchen,

dv = Volumenelement, $d\omega = \text{Raumwinkelelement,}$ $\overrightarrow{r_s}, \overrightarrow{r_{s}}, \overrightarrow{r_{\Delta \rho}} = \text{von den Schwerpunkten der Funktionen s} (\overrightarrow{r}), \varepsilon (\overrightarrow{r}) \text{ und}$ $\Delta \rho(\overrightarrow{r}) \text{ aus gezählte Ortsvektoren,}$ $v = \int dv \, \overrightarrow{s(r)} = \text{Teilchenvolumen.}$

Im Grenzfall unendlicher Verdünnung bei rein zufälliger Anordnung der Teilchen wird die meßbare Streuung eines monodispersen Systems durch die Korrelationsfunktion

$$C(r) = \frac{\frac{1}{4\pi} \int d\omega_{\vec{r}} \int dv' \,\Delta\rho\left(\vec{r'}\right) \,\Delta\rho\left(\vec{r'}-\vec{r}\right)}{\int dv'' \left[\Delta\rho\left(\vec{r''}\right)\right]^2} \tag{3}$$

eines einzigen Teilchens bestimmt¹⁹. C(r) hängt von der Elektronendichteverteilung im Teilchen *und* von der Elektronendichte ρ_L des Lösungsmittels ab.

Im folgenden werden Momente beliebig oft "spaltverschmierter" Korrelationsfunktionen²² in die Betrachtung einbezogen. Letztere entstehen durch Anwendung der (2) entsprechenden Integraloperation oder ihrer Umkehrung auf C(r) nach der Rekursion

$${}^{m}\mathbf{C}(r) = 2 \int_{0}^{\infty} \mathrm{d}t \cdot {}^{m-1}\mathbf{C}\left(\sqrt{r^{2}+t^{2}}\right), \tag{4}$$
$${}^{\circ}\mathbf{C}(r) \equiv \mathbf{C}(r) \;.$$

Der Verschmierungsgrad $m \left(\stackrel{\geq}{\leq} 0 \right)$ wird als Index an der linken oberen Ecke des Funktionssymbols angeschrieben. Das *n*-te Moment der *m*-fach spaltverschmierten Korrelationsfunktion ist die Größe

1150

²² H.-V. Pürschel, Dissertation, Univ. Jena, 1970.

H. 4/1971] B

$${}^{m}\mathbf{C}_{n} = \int_{0}^{\infty} \mathrm{d}r \, r^{n} \cdot {}^{m}\mathbf{C}(r) \,. \tag{5}$$

Aus der Korrelationsfunktion erhalten wir die auf das Korrelationsvolumen

$$v_{\rm c} = 4\pi \, \mathcal{C}_2 = \frac{v}{1 + \frac{\langle \varepsilon^2 \rangle_v}{\eta^2}} = \mathbf{I}(0) \tag{6}$$

normierte theoretische Streufunktion^{11, 19}

$$I(b) = 4\pi \int_{0}^{\infty} dr \, r^{2} \, C(r) \, \frac{\sin 2\pi br}{2\pi br}$$

= $I(0) \left[1 - \frac{(2\pi b)^{2}}{3!} \cdot \frac{C_{4}}{C_{2}} + \frac{(2\pi b)^{4}}{5!} \cdot \frac{C_{6}}{C_{2}} - \frac{(2\pi b)^{6}}{7!} \cdot \frac{C_{8}}{C_{2}} \pm \cdots \right]$ (7)

$$I(b) \approx v_c \exp\left[-\frac{(2\pi bR_{sc})^2}{3}\right].$$
(8)

Mit der Näherung (8) wird R_{sc}^2 aus der Guinierauftragung^{6, 2} log I(b) gegen b^2 bestimmt.

Das Quadrat des Korrelationsstreumassenradius ist durch das Meßverfahren als

$$R_{sc}^2 = \frac{1}{2} \cdot \frac{\mathrm{C}_4}{\mathrm{C}_2}$$

definiert¹¹. Hiernach hängt diese Größe wie folgt mit der Überschußelektronendichte $\Delta \rho$ zusammen:

$$R_{sc}^{2} = \frac{\int \mathrm{d}v \, r_{\Delta\rho}^{2} \cdot \Delta\rho \left(\overrightarrow{r_{\Delta\rho}}\right)}{\int \mathrm{d}v' \, \Delta\rho \left(\overrightarrow{r_{\Delta\rho}}\right)}.$$
(9)

Der Korrelationsstreumassenradius eines Teilchens kann nach Stuhrmann und Kirste¹⁸ durch

$$R_{sc}^{2} = R_{s}^{2} + \frac{1}{\eta \cdot v} \int \mathrm{d}v \, r_{\varepsilon}^{2} \cdot \varepsilon \left(\overrightarrow{r_{\varepsilon}} \right) \tag{10}$$

dargestellt werden. Dabei ist

$$R_{\rm s}^2 = \frac{1}{v} \int \mathrm{d}v \, r_{\rm s}^2 \cdot \mathrm{s} \, \left(\overrightarrow{r_{z}} \right) \tag{11}$$

das Quadrat des Formstreumassenradius. Wir weisen besonders darauf hin, daß die Schwerpunkte von $\vec{s(r)}$, $\vec{\epsilon(r)}$ und $\Delta \rho(\vec{r})$ nicht allgemein zusammenfallen. Mit Sicherheit gilt das nur für den praktisch kaum auftretenden Fall konstanter Elektronendichte im Innern der Teilchen.

Mit den Momenten ${}^{m}C_{n}$ der verschmierten Korrelationsfunktionen ergeben sich folgende Darstellungen²² von R_{sc}^{2} :

$$R_{\rm sc}^2 = \frac{3}{8} \cdot \frac{{}^{-1}{\rm C}_5}{{}^{-1}{\rm C}_3} = \frac{1}{2} \cdot \frac{{\rm C}_4}{{\rm C}_2} = \frac{3}{4} \cdot \frac{{}^{1}{\rm C}_3}{{}^{1}{\rm C}_1} = \frac{3}{2} \cdot \frac{{}^{2}{\rm C}_2}{{}^{2}{\rm C}_0} \,. \tag{12, 13, 14, 15}$$

Verschiedene periodische Fortsetzungen und Anwendung des Sampling-Theorems auf die verzerrten Korrelationsfunktionen²² ergeben die in Tab. 1 zusammengestellten Summenformeln (16, 17, 18, 19) zur Berechnung der Momente ${}^{m}C_{n}$ aus diskreten Werten der Streufunktionen $I(b_{k})$ oder $\widehat{I}(b_{k})$ in äquidistanten Abständen. Da in die Gl. (12, 13, 14, 15) hiernach bei der Berechnung von R_{sc}^{2} nur Quotienten der Streufunktionswerte eingehen, können durch Relativmessungen gewonnene, nicht normierte Meßwerte der Streufunktion in die Gleichungen eingesetzt werden, solange die geringe Winkelabhängigkeit des *Thomson*faktors vernachlässigbar ist.

Die Größe X ist eine beliebige Länge, für die nur $X \ge L$ gelten muß¹⁹. L ist der größte Durchmesser der untersuchten Teilchen.

Tabelle 1. Bestimmung der Momente ${}^{m}C_{n}$ aus der theoretischen Streufunktion I(b) und aus der unendlich-spaltverschmierten Streufunktion $\widehat{1}(b)$

Streu- funktion	$egin{array}{lll} b_k &= k/2 \ X \ k &= 1, 2, \dots \end{array}$ K	b _k = $(2k + 1)/4 X$ k = 0, 1,	Konv
	$C_4 = \frac{X^2}{2\pi} \sum I(b_k) \cdot \alpha_{4k}$	$^{2}\mathrm{C}_{2} = \mathrm{X}^{2} \sum \mathrm{I}(b_{k}) \cdot \gamma_{2k}$	
$I(b_k)$	(16) -	-4 (18)	5
	$\mathbf{C}_2 = \frac{1}{2\pi} \sum \mathbf{I}(b_k) \cdot \boldsymbol{\alpha}_{2k}$	${}^{2}\mathrm{C}_{0} = \sum \mathrm{I}(b_{k}) \cdot \gamma_{0k}$	
	$^{-1}\mathrm{C}_5 = rac{X^3}{2\pi}\Sigma\widehat{\mathrm{I}}(b_k)\cdot lpha_{5k}$	${}^{1}\mathrm{C}_{3} = X^{3} \sum \widehat{\mathrm{I}}(b_{k}) \cdot \gamma_{3k}$	
$\widehat{\mathrm{I}}\left(b_{k}\right)$	(17) -	-2 (19)	4
	$^{-1}\mathrm{C}_{3} = \frac{X}{2\pi} \sum \widehat{\mathrm{I}}(b_{k}) \cdot \alpha_{3k}$	${}^{1}\mathrm{C}_{1} = X \sum \widehat{\mathrm{I}}(b_{k}) \cdot \gamma_{1k}$	

1152

Mit diesen Formeln und den Koeffizienten (20) bis (27) kann nach (12, 13, 14, 15) der Streumassenradius aus der gemessenen Streufunktion $\widehat{S} \sim \widehat{I}$ oder der entschmierten Streufunktion $S \sim I$ bestimmt werden

Die zur praktischen Anwendung der Gl. (12, 13, 14, 15) und (16, 17, 18, 19) notwendigen Koeffizienten können ein- für allemal berechnet werden.

$$\alpha_{2k} = (-1)^k \tag{20}$$

$$\alpha_{3k} = (-1)^{k-1} - [1 + (-1)^{k-1}] \cdot \frac{2}{(k\pi)^2}$$
(21)

$$\alpha_{4k} = (-1)^{k-1} \left[1 - \frac{6}{(k\pi)^2} \right]$$
(22)

$$\alpha_{5k} = (-1)^{k-1} \left[1 - \frac{12}{(k\pi)^2} \right] + \left[1 + (-1)^{k-1} \right] \cdot \frac{24}{(k\pi)^4}$$
(23)
$$k = 1, 2, \dots$$

$$\gamma_{0k} = (-1)^k \cdot \frac{1}{\frac{2k+1}{2}\pi}$$
(24)

$$\gamma_{1k} = (-1)^k \cdot \frac{1}{\frac{2k+1}{2}\pi} - \frac{1}{\left(\frac{2k+1}{2}\pi\right)^2}$$
(25)

$$\gamma_{2k} = (-1)^k \left[\frac{1}{\frac{2k+1}{2}\pi} - \frac{2}{\left(\frac{2k+1}{2}\pi\right)^3} \right]$$
(26)

$$\gamma_{3k} = (-1)^k \left[\frac{1}{\frac{2k+1}{2}\pi} - \frac{6}{\left(\frac{2k+1}{2}\pi\right)^3} \right] + \frac{6}{\left(\frac{2k+1}{2}\pi\right)^4}$$
(27)
$$k = 0, 1, \dots$$

Die Tab. 1 enthält außer den Formeln die Potenz von k, mit der die Summanden gegen Null konvergieren, wenn es sich um die Streuung korpuskularer Teilchen handelt, deren Streukurve bis auf stärker abfallende oszillierende Glieder proportional zu b^{-4} bei wachsendem Streuwinkel gegen Null geht¹¹. Die Konvergenz hängt also außer von den Koeffizienten vor allem noch vom Verlauf der Streukurve ab. Bei schwach abfallenden Streukurven mit hohen Nebenmaxima können

Monatshefte für Chemie, Bd. 102/4

hierdurch Abbruchfehler auftreten, wenn die Streuung nicht bis zu hinreichend großen Winkeln bekannt ist.

Außer im Konvergenzverhalten unterscheiden sich die Formeln (16, 17, 18, 19) noch in der Lage der Sampling-Punkte; für die schneller konvergierenden Formeln liegt der erste Musterpunkt näher am Primärstrahl.

Beispiel

An dieser Stelle geben wir als Beispiel die Bestimmung des Streumassenradius aus der von *Mittelbach* und *Porod*²³ berechneten theoretischen Streufunktion $\phi_k = \phi(b_k)$ eines schwach gestreckten Rotationsellipsoides mit den Halbachsen L/q, L/q, L. Der Streckungsgrad qbeträgt 1.2. Die Tab. 2 enthält neben der Streufunktion ϕ_k die verwendeten Koeffizienten α_{4k} und α_{2k} sowie die Werte der Summen und ihres Quotienten, aus dem entsprechend

$$R_{s}^{2} = \frac{1}{2} X^{2} \frac{\sum \Phi_{j} \cdot \alpha_{4j}}{\sum \Phi_{j} \cdot \alpha_{2j}}$$

$$\tag{28}$$

Tabelle 2. Beispiel für die Ermittlung des Streumassenradiusquadrates nach (13, 16, 20, 22)

k	Φ_k	α_{4k}	α_{2k}	$\sum_{j=1}^{k} \Phi_j \alpha_{4j}$	$\sum_{j=1}^k \Phi_j \alpha_{2j}$	$\frac{\sum\limits_{j=1}^{k} \Phi_j \cdot \alpha_{4j}}{\sum\limits_{j=1}^{k} \Phi_j \cdot \alpha_{2j}}$	$rac{R_{ m s}^2-R_{ m sth}^2}{R_{ m sth}^2}\cdot 100\%$
1	0.6926	0.392076	1	0.2716	0.6926	0.3921	80
2	0.2010	-0.848019	1	0.1011	0.4916	0.2057	5.6
3	0.0098	0.932435	1	0.1102	0.5014	0.2199	0.9
4	0.0055	0.962005	1	0.1049	0.4959	0.2116	-2.9
5	0.0036	0.975683	1	0.1085	0.4995	0.2171	0.3
6	0.0004	-0.983113	1	0.1081	0.4991	0.2165	0.6
7	0.0009	0.987593	1	0.1090	0.5000	0.2179	0.03
8	0.0002	-0.990501	— 1	0.1088	0.4998	0.2176	0.1
9	0.0002	0.992495	1	0.1090	0.5000	0.2179	0.03

Es sind die Streufunktion ϕ_k , die zur Berechnung verwendeten Koeffizienten α_{nk} und die in (13) einzusetzenden Teilausdrücke nach jeweils kMusterpunkten angegeben.

Die letzte Spalte enthält den Fehler, mit dem das aus k Probenpunkten bestimmte R_s^2 behaftet ist. Es wird eine praktisch vollständige Übereinstimmung mit dem theoretischen Wert (29) erreicht.

1154

²³ P. Mittelbach und G. Porod, Acta Phys. Austr. 15, 122 (1962).

nach k Summationsschritten der Streumassenradius bestimmt wird. Die letzte Spalte enthält den Fehler von R_s^2 gegenüber dem theoretischen Wert

Abb. 1. Lage der im Beispiel Tab. 1 zur R_s^2 -Bestimmung nach (13, 16, 20, 22) verwendeten Probenpunkte (eingezeichnete Ordinaten)

Die Probenpunkte liegen bei $b_k = \frac{1}{2X} = \frac{1}{2 \cdot 1,047 \cdot L}$. Als Kreise sind die von *Mittelbach* und *Porod*²³ berechneten Funktionswerte eingezeichnet. Das Beispiel demonstriert gleichzeitig anschaulich die Redundanz bei derartig enger Lage der Probenpunkte.

Es reicht die Kenntnis der eingezeichneten Ordinaten.

bei Abbruch der Streukurve nach k Summanden. Bereits nach zwei Summanden wird bei der vorliegenden Streukurve und dem gewählten Schrittabstand in der Folge ein Fehler von 6% nicht mehr überschritten. Nach fünf Probenpunkten bleibt er unter 1% und bewegt sich bei etwa 10 Summanden im Bereich 0.3 bis 1‰.

Abb. 1 demonstriert anhand der theoretisch berechneten Funktionswerte, wie weit die Probenpunkte auseinander liegen können, ohne daß ein Informationsverlust eintritt. Es wurde $X = 1.047 \cdot L$ gewählt.